
BEACON PLATFORM, Inc. 5 Hanover Square, 20th Floor, Suite 2001, New York NY 10004

Beacon White Papers

Beacon’s Data Warehouse and
Bi-Temporal Data Model

2

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

A key part of the Beacon platform stack is the integrated data
warehouse: an object-oriented database – the Beacon Object
Database – that forms a data fabric that all Beacon analytics
and applications can access.

In addition to storing data in a flexible and uniform way, Bea-
con’s data models allow for easy access to versioned data –
that is,
as data changes over time, applications access the most
recent data in most cases and are able to access old versions
when required, with a clear audit trail of changes.

We call this versioned data structure “bi-temporal” data be-
cause there are two times involved: the time the data is associ-
ated with (the “as-of” time), and the time the data was actually
updated (the “entry time”). For example, a calculation might
generate data corresponding to a run for a particular business
date, like the end of a month, but that calculation might be run
several times: once on the business date, once a few days lat-
er, and once a month later. In that example, the “as-of” time is
the business date for each of the updates, but the “entry time”
is different for each of the updates. All versions of the calculat-
ed data are available in Beacon.

This time-based data versioning fits nicely into Beacon’s object
models as well. At the bottom of the hierarchy of objects in
Beacon’s dependency graph, there are environment settings
that control parameters, such as the current date and time.
Beacon makes it easy to override those environment settings
to switch to any past date and time, and Beacon’s bi-temporal
data automatically shifts to use the version appropriate for
that environment time. This makes it easy
to account for and drill into the impact
of data changes on important metrics
for a business, such as profit and loss
calculations. For example, Beacon clients
can “time travel” to run reports as of any
market date and position date, with full
transparency into all inputs and updates.

Introduction

Beacon clients can “time travel”
to run reports as of any market
date and position date, with full
transparency into all inputs and
updates.

About Beacon Platform, Inc.

Beacon Platform, Inc. was founded in
2014 by the front office trading and risk
technologists who created SecDB, Athena
and Quartz at Goldman Sachs, JP Morgan
and Bank of America Merrill Lynch. Lever-
aging the experience and lessons learned
during their extensive careers at major
investment banks, Beacon’s founders have
created the only third-party solution on
the market that delivers a cloud-based,
end-to-end development and production
platform. With Beacon‘s open architecture,
transparent source code, and automated
infrastructure solutions, we give financial
and quantitative developers the tools they
need so that they can focus on the busi-
ness rather than plumbing and process.
And for business users, we deliver fully
integrated applications for analytics, pri-
cing, risk management, and more. Beacon
has over 60 employees with offices in the
United States, UK, Germany, and Japan.

www.beacon.io

3

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Beacon supports arbitrary data sources, such as popular relational databases, cloud vendor
database products, and big data repositories such as Hadoop. Clients can choose to configure
their data infrastructure as they find appropriate.

However, at the core of Beacon’s data model is the Beacon Object Data-
base. This data fabric acts like a distributed file system, where objects
are stored by name in a structure that supports directories and subdi-
rectories. Under the hood, the Beacon Object Database uses MongoDB,
but developers never access the Mongo database with direct MongoDB
API calls – instead they use the Beacon Object Database API. Adding a
layer of abstraction to data access allows Beacon clients to use many
different underlying database technologies.

Thanks to that abstraction, Beacon provides useful logical architecture
on top of the raw database functionality. For example, the Beacon Object Database supports
“symlinks”, where a subdirectory in one Beacon Object Database can link to a subdirectory in a
different physical Beacon Object Database. Symlinks let us share data across physical databas-
es inside a client environment and also allow Beacon to share common data with all its clients.

In-Memory Namespaces and the Beacon
Object Database

Adding a layer of
abstraction to data
access allows Beacon
clients to use many
different underlying
database technologies.

Client Case Study: Month-End Close
One of Beacon’s clients manages oil inventories around the world. The client was using a legacy CTRM
system to report P&L and market exposure related to their inventory position. Their biggest pain point
was managing end-of-month P&L. Due to outdated terminal software, they could only receive actu-
alized end-of-month inventory levels three days after month end. Once they received the inventory
levels, they could not simply update them and re-close the prior month because their system could
not filter out any changes that happened after month end, such as new hedges, actualized secondary
costs, historical market data corrections from vendors, and changes in mark-to-market curves. As
a workaround, the client had to complete each month’s close on the last day of the month, export
all end-of-month closing data, and then spend days doctoring it outside of the legacy CTRM system.
Needless to say, such a manual process often resulted in human errors and incorrect monthly reports.

After implementing Beacon, the client was able to take advantage of the bi-temporal data model and
gained the ability to update inventory levels as of the last day of the prior month. They can now enter
all “as of” information as it becomes available and safely re-close the prior month at any time. They
no longer need to worry about post month-end changes slipping through the cracks and producing
erroneous reports. By implementing Beacon, they have also saved several man-days of manual work
per month and made end-of-month reports 100% accurate.

4

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Figure 2: View of the data associated with a particular object, named /Assets/EqIndexes/SPX,
and corresponding to the S&P 500 equity index.

The objects in the Beacon Object Database can be referenced from any process running in the
platform. The Beacon Object Database is used as the only data source by most applications in
Beacon. These objects can also be used as interfaces to other databases, so that developers
who use Beacon have a consistent, uni-
form interface to all the data they need. For
example, many clients connect Beacon to
their existing in-house databases via secure
VPN. Instead of having to source data from
institutional data sources on an ad hoc basis
for every analysis, Beacon requires develop-
ers to do the work of interfacing with a data

Instead of having to source data from
institutional data sources on an ad hoc
basis for every analysis, Beacon requires
developers to do the work of interfacing
with a data source only once.

Figure 1: View of the Beacon Object Database. This shows the contents of the
folder /Assets/EqIndexes, which holds objects representing various equity indexes.

5

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Figure 3: Financial time series examples. The blue line shows the “prompt”, or closest-to-settlement, futures price for
crude oil trading on the NYMEX; the green line shows the crude oil December 2012 futures price; the orange line shows the
crude oil August 2017 futures price.

Bi-Temporal Time Series Data
Beacon’s model for bi-temporal reference data is based on a framework where an object in
the Beacon Object Database can point to versioned data based on the environment settings for
the current date.Most financial market data can be represented as “time series”: market data
measurements taken at a range of times.

For daily time series – those with one point per date, such as the official settlements of futures
prices shown in Figure 3 – the “as-of” time is the settlement date. In most cases, those daily
points are written to the database on the settlement date, but,
occasionally, incorrect values are written to the database and need to be amended at a later time.

Instead of having to source data from
institutional data sources on an ad hoc
basis for every analysis, Beacon requires
developers to do the work of interfacing
with a data source only once.

source only once. Thereafter, every developer and end-user application enjoys the benefit of
having just one right way to access that data forever.

When an object is loaded into a Beacon process from the Beacon Object Database, it is loaded
as a fully functional business object, using the data in the database to set its properties. For
example, loading the object “/Assets/EqIndexes/SPX” into memory creates an equity index
object configured to represent the S&P index. However, besides simply representing an index,
that object can also do interesting calculations – calculate forward equity prices, interpolate
implied volatilities for equity option prices, note which futures market is based on the index,
and so on. That translation from “saved set of data” to “fully featured business object” happens
automatically, so developers do not need to rebuild that translation over and over.
Objects loaded into a process live in an in-memory namespace, which looks like an in-memory
cache of the Beacon Object Database distributed file system. That is, objects have the same
names and are cached in session to avoid reloading a common object more than once.

6

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Bi-Temporal Reference Data
Reference data in financial markets, as opposed to market data,
refers to data that is fairly static: the dates defining a coupon
schedule for a corporate bond, the lot size of a futures contract,
holiday calendars, and so on.

While a piece of reference data might change only rarely, refer-
ence data of some kind or another change almost every day, and,
as with market data, those changes can impact important business calculations.

Beacon applies its bi-temporal data model to reference data as well, so that old versions of
reference data can be easily reproduced. As a result, Beacon’s bi-temporal model for reference
data makes it easy to recalculate the value of a portfolio on some date in the past, quantify the
impact of changes in different types of reference data,and drill into the results -and no data is
ever lost.

Bi-Temporal Trade and Position Data
The Beacon Standard platform product includes a “deal model” for representing financial trans-
actions. This deal model flexibly handles all the complexity of modern derivatives trading: amend-
ments, lifecycle events, such as option exercises and coupon payments, deal validation workflows,
feeds of deal data to downstream systems, such as accounting platforms, and so on.

As with market data and reference data, bi-temporality is central to Bea-
con’s deal model as well. A “deal” in Beacon is a container for a series
of trade “events,” ordered by time. The first event is the “open” event:
the initial buy or sell of the financial instrument. If the trade is amended,
a new event is added to the event series that backs out the open event’s
position and replaces it with the new position. That is, the original event
is never deleted; instead a new event in the series is created.

If the amend was booked on a date after the original booking, Beacon
makes it easy to view the positions “as of” the original date, showing the
original position. Beacon’s ability to reproduce market states “as of” any
date is critical for many business functions where old environments need to be fully recreated.

Beacon’s ability to
reproduce market states
“as of” any date is crit-
ical for many business
functions where old
environments need to
be fully recreated.

Important calculations, such as measures of profit and loss or risk metrics, depend on those
market data values, and amendments to them can have significant impact. Since Beacon’s time
series are bi-temporal, it is straightforward to identify all the updates to the point for a particular
“as-of” date. In Beacon, no data is ever lost, an audit trail is in place to identify the changes, and
isolating the impact of data changes on calculated values is straightforward.

In Beacon, no data is ever
lost, an audit trail is in place
to identify the changes, and
isolating the impact of data
changes on calculated values
is straightforward.

7

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Figure 4: The Beacon Trade Blotter enables users to define custom environments within which to run reports and
analyze positions. This screenshot was taken on the real-world current date of 8-9-2017. Position Date = 8-09-2017
means live positions are used. Market Date = 08-08-2017, Market Open = True and Pricing Date = 08-09-2017 means
that for all pricing, risk and analytics, the previous day’s closing market data is rolled forward to the current Pricing
Date, as appropriate, and replaced with real-time market data where available.

Figure 5: This screenshot was taken on the real-world current date of 8-9-2017. Position Date = 8-09-2017 means
live positions are used. Market Date = 08-08-2017, Market Open = False and Pricing Date = 08-08-2017 means that
for all pricing, risk and analytics is based on the previous day’s close. Sliding the RefDataEntryCutoff into the future
would enable the user to pull in later updates to the closing market data, if any.

Beacon’s ability to
reproduce market states
“as of” any date is crit-
ical for many business
functions where old
environments need to
be fully recreated.

In Beacon, no data is ever
lost, an audit trail is in place
to identify the changes, and
isolating the impact of data
changes on calculated values
is straightforward.

8

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Moving the Clock: Accessing Prior Data Versions
A core piece of Beacon’s in-memory namespace is
a “dependency graph,” which defines connections
between values on the business objects loaded
from the Beacon Object Database. For example,
one business object might be a financial instru-
ment, such as a bond future. As is the case with
every financial instrument in Beacon, the bond
future object knows what its contract terms are,
how to price itself, and how to evolve itself through
lifecycle events.

In addition to providing an immutable audit trail for trade activity, Beacon’s event series
architecture lets traders associate lifecycle events with their original deals. For example,
a currency option might exercise into a currency forward contract; in Beacon, the exercise is
treated as another event in the event series of the original deal which evolves the positions
from the option to the forward. In other trading systems, the exercise is often booked as a
separate trade which can be difficult to link back to the original option trade.

Figure 6: This screenshot was taken on the real-world current date of 8-9-2017. Positions are based on Position
Date = 6-01-2017. Market Data for all pricing, risk and analytics is based on the same date. Sliding the TradeEntry-
Cutoff or the TradingAsOfCutoff into the past or future would enable the user to pull in later updates to the
positions.

Every financial instrument
in Beacon knows what its
contract terms are, how to
price itself, and how to evolve
itself through lifecycle events.

9

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

The price of the bond future is calculated based on the cheapest-to-deliver bond in the deliv-
erable basket for that future, plus a spread (calculated on the fly) to match the market futures
price. Beacon’s dependency graph connects the bond future instrument price to the underly-
ing market data, so that if those market data change, the price will recalculate efficiently.

At the bottom of the dependency graph, there are environment settings such as the “current
date,” which determine the appropriate version of the bi-temporal data (time series, refer-
ence data, trade data, and so on) to be used.

The relevant dates and times that define the “current date” environment
for bi-temporal data are:

–– Market Data Date: the “as-of” date for market data in the bi-temporal time series model.

–– RefData AsOf Cutoff: the time of date on Market Data Date that the close corresponds to;
also the time part of the “as-of” date/time.

–– RefData Entry Cutoff: the time cutoff for entry time of market data in the bi-temporal time
series model. If there is more than one update to a time series point for a piece of market
data on the Market Data Date, moving the Entry Cutoff back and forth across those update
times will change the market data value used for pricing and risk calculations.

–– Trade As-Of Cutoff: the “as-of” time cutoff for trade events; any events with an as-of time
after this are excluded from positions.

–– Trade Entry Cutoff: the entry time cutoff for trade events; any events with an entry time
after this are excluded from positions. For example, if a deal was entered before the close
time on day 1, then amended on day 2, you could choose an as-of time for the amendment
to be before the close time on day 1 (affecting the official close for day 1), but still be able
to easily slide the Trade Entry Cutoff back to the close time for day 1 to see the original set
of closing positions and reproduce the original behavior.

10

Beacon’s Data Warehouse and Bi-Temporal Data Model

Beacon White Papers – Copyright Beacon Platform Incorporated 2018

Conclusions
Beacon’s integrated data warehouse, in the
form of the Beacon Object Database, gives a
business a one stop shop for data: any new
data is integrated into the warehouse only
once, and it is then available for all devel-
opers and all applications, in development
and in
production, forever. The data warehouse is
tightly integrated with Beacon’s business
object model and powerful dependency
graph framework, which makes interacting
with objects and their associated data easy: there is no need for many separate implementa-
tions of “data loaders” to translate data into functionality.

Many kinds of data in Beacon – including market data, reference data, and trade data – use
bi-temporal data, which defines two times for each data point: an “as-of” time correspond-
ing to what time the data point represents; and an “entry time” corresponding to the time the
update happened. Updates to a particular data point result in new versions being created: for a
single as-of time there might be updates with many different entry times.

All versions of data are saved in the database,
and no data is ever lost. Beacon’s dependency
graph, through its environment settings, makes
it easy to control which versions of data are used
for different kinds of functionality. This flexibility
makes it easy to audit data changes, reproduce
old behavior, and quantify the impact of data
changes.

For more information, please contact
info@beacon.io

The data warehouse is tightly integrated
with Beacon’s business object model and
powerful dependency graph framework,
which makes interacting with objects
and their associated data easy:
there is no need for many separate
implementations of “data loaders” to
translate data into functionality.

Beacon’s dependency
graph, through its
environment settings,
makes it easy to control
which versions of data are
used for different kinds of
functionality. This flexibility
makes it easy to audit data
changes, reproduce old
behavior, and quantify the
impact of data changes.

